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1 INTRODUCTION 
 
Structural health monitoring is certainly one of the most powerful management tools and is 
therefore gaining in importance in the civil engineering community. A typical health monitoring 
system is composed of a network of sensors that measure the parameters relevant to the state of 
the structure and its environment.  
Conventional sensors based on mechanical and/or electrical transducers are able to measure 
most of these parameters. In the last few years, fiber optic sensors have made a slow but signifi-
cant entrance in the sensor panorama. After an initial euphoric phase when optical fiber sensors 
seemed on the verge of invading the whole world of sensing, it now appears that this technology 
is only attractive in the cases where it offers superior performance compared to the more proven 
conventional sensors. The additional value can include an improved quality of the measure-
ments, a better reliability, the possibility of replacing manual readings and operator judgment 
with automatic measurements, an easier installation and maintenance or a lower lifetime cost. 
The first successful industrial applications of fiber optic sensors to civil structural monitoring 
demonstrate that this technology is now sufficiently mature for a routine use and that it can 
compete as a peer with conventional instrumentation. 
From many points of view, fiber optic sensors are indeed the ideal transducers for civil struc-
tural monitoring. Being durable, stable and insensitive to external perturbations, they are par-

Distributed Fiber optic Strain and Temperature Sensing for 
Structural Health Monitoring 

Daniele Inaudi, Branko Glisic 
SMARTEC SA, Manno, Switzerland  

 

ABSTRACT: Distributed fiber optic sensing presents unique features that have no match in 
conventional sensing techniques. The ability to measure temperatures and strain at thousands of 
points along a single fiber is particularly interesting for the monitoring of large structures such 
as bridges, pipelines, flow lines, oil wells, dams and dikes. Sensing systems based on Brillouin 
and Raman scattering have been used for example to measure cables and pavement temperatures 
in bridges, detect pipeline leakages, prevent failure of pipelines installed in landslide areas, op-
timize oil production from wells and detect hot-spots in high-power cables.  
The measurement instruments have been vastly improved in terms of spatial, temperature and 
strain resolution, distance range, measurement time, data processing and system cost. Analyzers 
for Brillouin and Raman scattering are now commercially available and offer reliable operation 
in field conditions.  
New application opportunities have however demonstrated that the design and production of 
sensing cables is a critical element for the success of any distributed sensing instrumentation 
project. Although standard telecommunication cables can be effectively used for sensing ordi-
nary temperatures, monitoring high and low temperatures or distributed strain present unique 
challenges that require specific cable designs.  
This contribution presents different cable designs for high-temperature sensing, strain sensing 
and combined strain and temperature monitoring, as well as relevant application examples to the 
monitoring of civil and oil & gas structures. 
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ticularly interesting for the long-term health assessment of civil structures. This contribution 
will concentrate on distributed fiber optic sensors that offer unique characteristics that are un-
paralleled by the conventional sensors. 

2 DISTRIBUTED FIBER OPTIC SENSORS 
 
Unlike electrical and localized fiber optic sensors, distributed sensor offer the unique character-
istic of being able to measure physical and chemical parameters along their whole length, allow-
ing the measurements of thousands of points using a single transducer. The most developed 
technologies of distributed fiber optic sensors are based on Raman and Brillouin scattering. 
Both systems make use of a non-linear interaction between the light and the silica material of 
which the fiber is made. If light at a known wavelength is launched into a fiber, a very small 
amount of it is scattered back every point along the fiber. The scattered light contains compo-
nents at wavelengths that are different form the original signal. These shifted components con-
tain information on the local properties of the fiber, in particular their strain and temperature.  

2.1 Raman Distributed Temperature Sensors  

Raman scattering is the result of a non-linear interaction between the light traveling in a fiber 
and silica. When an intense light signal is shined into the fiber, two frequency-shifted compo-
nents called respectively Raman Stokes and Raman anti-Stokes will appear in the back-scattered 
spectrum. The relative intensity of these two components depends on the local temperature of 
the fiber. If the light signal is pulsed and the back-scattered intensity is recorded as a function of 
the round-trip time, it becomes possible to obtain a temperature profile along the fiber (Dakin et 
al. 1986). Systems based on Raman scattering is commercialized by SMARTEC in Switzerland, 
Sensornet in the UK and Sensa in the UK.  Typically a temperature resolution of the order of 
0.1°C and a spatial resolution of 1m over a measurement range up to 8 km are obtained for 
multi-mode fibers.  

 
Figure 1:Raman Scattering system (DiTemp) 
 

 
Figure 2: Brillouin Scattering system (DiTeSt) 
 

2.2 Brillouin Distributed Temperature sensors 
Brillouin scattering sensors show an interesting potential for distributed strain and temperature 
monitoring (Karashima et al. 1990). Systems able to measure strain or temperature variations of 
fibers with length up to 50 km with spatial resolution down in the meter range are now demon-
strating their potential in field applications. For temperature measurements, the Brillouin sensor 
is a strong competitor to systems based on Raman scattering, while for strain measurements it 
has practically no rivals.  

Brillouin scattering is the result of the interaction between optical and sound waves in optical 
fibers. Thermally excited acoustic waves (phonons) produce a periodic modulation of the refrac-
tive index. Brillouin scattering occurs when light propagating in the fiber is diffracted backward 
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by this moving grating, giving rise to a frequency-shifted component by a phenomenon similar 
to the Doppler shift. This process is called spontaneous Brillouin scattering. 

Acoustic waves can also be generated by injecting in the fiber two counter-propagating 
waves with a frequency difference equal to the Brillouin shift. Through electrostriction, these 
two waves will give rise to a traveling acoustic wave that reinforces the phonon population. 
This process is called stimulated Brillouin amplification. If the probe signal consists in a short 
light pulse and its reflected intensity is plotted against its time of flight and frequency shift, it 
will be possible to obtain a profile of the Brillouin shift along the fiber length. 

The most interesting aspect of Brillouin scattering for sensing applications resides in the tem-
perature and strain dependence of the Brillouin shift (Niklès et al. 1997). This is the result of the 
change the acoustic velocity according to variation in the silica density. The measurement of the 
Brillouin shift can be approached using spontaneous or stimulated scattering. The main chal-
lenge in using spontaneous Brillouin scattering for sensing applications resides in the extremely 
low level of the detected signal. This requires sophisticated signal processing and relatively long 
integration times. A commercial system based on spontaneous Brillouin scattering is available 
from ANDO (Japan). 
Systems based on the stimulated Brillouin amplification have the advantage of working with a 
relatively stronger signal but face another challenge. To produce a meaningful signal the two 
counter-propagating waves must maintain an extremely stable frequency difference. This usu-
ally requires the synchronization of two laser sources that must inject the two signals at the op-
posite ends of the fiber under test. The MET (Metrology laboratory) group at Swiss Federal In-
stitute of Technology in Lausanne (EPFL) proposed a more elegant approach (Niklès et al. 
1994). It consists in generating both waves from a single laser source using an integrated optics 
modulator. This arrangement offers the advantage of eliminating the need for two lasers and in-
trinsically insures that the frequency difference remains stable independently from the laser 
drift. SMARTEC and Omnisens (Switzerland) commercialize a system based on this setup and 
named DiTeSt (Figure 2). It features a measurement range of 10 km with a spatial resolution of 
1 m or a range of 25 km with a resolution of 2 m. The strain resolution is 2 με and the tempera-
ture resolution 0.1°C. The system is portable and can be used for field applications.  

Since the Brillouin frequency shift depends on both the local strain and temperature of the fi-
ber, the sensor setup will determine the actual sensitivity of the system. For measuring tempera-
tures it is sufficient to use a standard telecommunication cable. These cables are designed to 
shield the optical fibers from an elongation of the cable. The fiber will therefore remain in its 
unstrained state and the frequency shifts can be unambiguously assigned to temperature varia-
tions. If the frequency shift of the fiber is known at a reference temperature it will be possible to 
calculate the absolute temperature at any point along the fiber. Measuring distributed strains re-
quires a specially designed sensor. A mechanical coupling between the sensor and the host 
structure along the whole length of the fiber has to be guaranteed. To resolve the cross-
sensitivity to temperature variations, it is also necessary to install a reference fiber along the 
strain sensor. Similarly to the temperature case, knowing the frequency shift of the unstrained 
fiber will allow an absolute strain measurement. 

2.3 Sensing Cable Design 
Traditional fiber optic cable design aims to the best possible protection of the fiber itself from 

any external influence. In particular it is necessary to shield the optical fiber form external hu-
midity, side pressures, crushing and longitudinal strain applied to the cable. These design have 
proven very effective in guaranteeing the longevity of optical fibers used for communication 
and can be used as sensing elements for monitoring temperatures in the –20°C to +60°C range, 
in conjunction with Brillouin or Raman monitoring systems.  

Sensing distributed temperature below 20°C or above 60°C requires a specific cable design, 
especially for Brillouin scattering systems, where it is important to guarantee that the optical fi-
ber does not experience any strain that could be misinterpreted as a temperature change due to 
the cross-sensitivity between strain and temperature.  

On the other hand, the strain sensitivity of Brillouin scattering prompts to the use of such sys-
tems for distributed strain sensing, in particular to monitor local deformations of large structures 
such as pipelines, landslides or dams. In these cases, the cable must faithfully transfer the struc-
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tural strain to the optical fiber, a goal contradicting all experience form telecommunication cable 
design where the exact opposite is required. 
Finally when sensing distributed strain it is necessary to simultaneously measure temperature to 
separate the two components. This is usually obtained by installing a strain and a temperature 
sensing cables in parallel. It would be therefore desirable to combine the two functions into a 
single packaging. 
 

2.4 Extreme temperature sensing cable 
The extreme temperature sensing cables are designed for distributed temperature monitoring 

over long distances. They consist of up to four single mode or multimode optical fibers con-
tained in a stainless steel loose tube, protected with stainless steel armoring wires and optionally 
a polymer sheath. These components can be differently combined in order to adapt the cable to 
the required performance and application. The use of appropriate optical fibre coating (polyim-
ide or carbon/polyimide) allows the operation over large temperature ranges, the stainless steel 
protection provides high mechanical and additional chemical resistance while the polymer 
sheath guarantees corrosion protection. The carbon coating offers improved resistance to hydro-
gen darkening. The over-length of the optical fibers is selected in such a way that the fiber is 
never pulled or compressed, despite the difference in thermal expansion coefficients between 
glass and steel. The total cable diameter is only 3.8 mm (see figure 3). 

These cables can be used in a wide range of applications that require distributed temperature 
sensing, such as temperature monitoring of concrete in massive structures, waste disposal sites, 
onshore, off-shore and downhole sites in gas and oil industry, hot spots, cold spots and leakage 
detection of flow lines and reservoirs, fire detection in tunnels and mapping of cryogenic tem-
peratures, just to name a few. 
 

Optical fibres 

Stainless steel wires 

Stainless steel  
loose tube 

Sheath 

 
 
Figure 3: Extreme temperature sensing cable design and termination 

2.5 Strain sensing tape: SMARTape 
 

When strain sensing is required, the optical fiber must be bonded to the host material over the 
whole length. The transfer of strain is to be complete, with no losses due to sliding. Therefore 
an excellent bonding between strain optical fiber and the host structure is to be guaranteed. To 
allow such a good bonding it has been recommended to integrate the optical fiber within a tape 
in the similar manner as the reinforcing fibers are integrated in composite materials. To produce 
such a tape, we selected a glass fiber reinforced thermoplastic with PPS matrix. This material 
has excellent mechanical and chemical resistance properties. Since it production involves heat-
ing to high temperatures (in order to melt the matrix of the composite material) it is necessary 
for the fiber to withstand this temperature without damage. In addition, the bonding between the 
optical fiber coating and the matrix has to be guaranteed. Polyimide-coated optical fibers fit 
these requirements and were therefore selected for this design. 
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The typical cross-section width of the thermoplastic composite tape that is used for manufac-
turing composite structures is in the range of ten to twenty millimeters, and therefore not critical 
for optical fiber integration. The thickness of the tape can be as low as 0.2 mm, and this dimen-
sion is more critical since the external diameter of polyimide-coated optical fiber is of 0.145 mm 
approximately. Hence, only less than 0.03 mm of tape material remains on top or bottom of the 
optical fiber, with the risk that the optical fiber will emerge from the tape. The scheme of the 
sensing tape cross-section, with typical dimensions, is presented in Figure 4. 

The use of such sensing tape (called SMARTape) is twofold: it can be used externally, at-
tached to the structure, or embedded between the composite laminates, having also a structural 
role.  
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Figure 4: Cross-section picture and micrograph of the sensing tape: SMARTape 

2.6 Combined Strain and temperature sensing: SMARTprofile 
 

The SMARTprofile sensor design combines strain and temperature sensors in a single package.  
This sensor consists of two bonded and two free single mode optical fibers embedded in a poly-
ethylene thermoplastic profile. The bonded fibers are used for strain monitoring, while the free 
fibers are used for temperature measurements and to compensate temperature effects on the 
bonded fibers. For redundancy, two fibers are included for both strain and temperature monitor-
ing. The profile itself provides good mechanical, chemical and temperature resistance. The size 
of the profile makes the sensor easy to transport and install by fusing, gluing or clamping. The 
SMARTprofile (see figure 4) sensor is designed for use in environments often found in civil 
geotechnical and oil & gas applications. However, this sensor cannot be used in extreme tem-
perature environments nor environments with high chemical pollution. It is not recommended 
for installation under permanent UV radiation (e.g. sunshine). 
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Figure 5: SMARTprofile cross-section and sample. The red tube contains the free fibers 

3 APPLICATION EXAMPLES 

This section briefly presents application examples of distributed sensing for the monitoring of 
civil and industrial structures. 
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3.1 Luzzone Dam Temperature monitoring 
Distributed temperature measurements are highly interesting for the monitoring of large struc-
tures. In the presented application, SMARTEC and EPFL used the DiTeSt system to monitor the 
temperature development of the concrete used to build a dam (Thévenaz et al. 1998). 
The Luzzone dam was recently raised by 17 meters to increase the capacity of the reservoir 
(Figure 6). The raising was realized by successively concreting 3m thick blocks. The tests con-
centrated on the largest block to be poured, the one resting against the rock foundation on one 
end of the dam. An armored telecom cable installed in serpentine during concrete pouring con-
stituted the Brillouin sensor. 
 

 
  

 
 
Figure 6: Luzzone Dam raising works and temperature measurements in the Luzzone Dam 55 days after 
concrete pouring (courtesy of L. Thévenaz) 
 
The temperature measurements started immediately after pouring and extended over 6 months. 
The measurement system proved reliable even in the demanding environment present at the dam 
(dust, snow, and temperature excursions). The temperature distributions after 15 and 55 days 
from concrete pouring are shown in Figure 6. Comparative measurements obtained locally with 
conventional thermocouples showed agreement within the error of both systems. 
This example shows how it is possible to obtain a large number of measurement points with 
relatively simple sensors. The distributed nature of Brillouin sensing make it particularly 
adapted to the monitoring of large structures were the use of more conventional sensors would 
require extensive cabling. 

3.2 Bitumen Joint Monitoring 
Plavinu hes is a dam belongs to the complex of three most important hydropower stations on the 
Daugava River in Latvia (see figure 7). In terms of capacity this is the largest hydropower plant 
in Latvia and is considered to be the third level of the Daugavas hydroelectric cascade. It was 
constructed 107 km distant from the firth of Daugava and is unique in terms of its construction - 
for the first time in the history of hydro-construction practice; a hydropower plant was built on 
clay-sand and sand-clay foundations with a maximum pressure limit of 40 m. The HPP building 
is merged with a water spillway. The entire building complex is extremely compact. There are 
ten hydro-aggregates installed at the hydropower plant and its current capacity is 870,000 kW. 
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Figure 7: Plavinu dam in Latvia 
 

 
Figure 8: SMARTape installation in the in-
spection gallery. 
 

One of the dam inspection galleries coincides with a system of three bitumen joints that con-
nects two separate blocks of the dam. Due to abrasion of water, the joints lose bitumen and the 
redistribution of loads in concrete arms appears. Since the structure is nearly 40 years old, the 
structural condition of the concrete can be compromised due to ageing. Thus, the redistribution 
of loads can provoke damage of concrete arm and as a consequence the inundation of the gal-
lery. In order to increase the safety and enhance the management activities it was decided to 
monitor the average strain in the concrete arm next to the joints. The DiTeSt system with 
SMARTape deformation sensor and Temperature Sensing Cable is used for this purpose (see 
figure 8). The sensors were installed by company VND2 with SMARTEC support and config-
ured remotely from the SMARTEC office. Threshold detection software with SPST (open-
ground) module was installed in order to send pre-warnings and warnings from the DiTeSt in-
strument to the Control Office. 

3.3 Gas Pipeline Monitoring 
About 500 meters of a buried, 35 years old gas pipeline, located near Rimini, Italy, lie in an un-
stable area. Distributed strain monitoring could be useful in order to improve vibrating wire 
strain gauges monitoring system, actually used in the site. The landslide progress with time and 
could damage pipelines up to be put out of service. Three symmetrically disposed vibrating 
wires were installed in several sections at a distance typically of 50/100 m chosen as the most 
stressed ones according a preliminary engineering evaluation. These sensors were very helpful, 
but could not fully cover the length of the pipeline and only provide local measurements. 
Different types of distributed sensors were used: SMARTape and Temperature Sensing Cable. 
Three parallel lines constituted of five segments of SMARTape sensor were installed over 
whole concerned length of the pipeline (see figure 9). The lengths of segments were ranged 
from 71 m to 132 m, and the position of the sensors with respect to the pipeline axis were at 0°, 
120° and –120° approximately. The strain resolution of the SMARTape is 20 micro-strains, 
with spatial resolution of 1.5 m (and an acquisition range of 0.25m) and provides the monitoring 
of average strains, average curvatures and deformed shape of the pipeline. The Temperature 
Sensing Cable was installed onto the upper line (0°) of the pipeline in order to compensate the 
strain measurements for temperature. The temperature resolution of the sensor is 1°C with the 
same resolution and acquisition of the SMARTape. All the sensors are connected to a Central 
Measurement Point by means of extension optical cables and connection boxes. They are read 
from this point using a single DiTeSt® reading unit. Since the landslide process is slow, the 
measurements sessions are performed manually once a month. The sensors have been measured 
for a period of two years, providing interesting information on the deformation induced by 
burying and by the landslide progression. A gas leakage simulation was also performed with 
success using the temperature sensing cable. 
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Figure 9: SMARTape on the gas pipeline. 

4 CONCLUSIONS 

The use of distributed fiber optic sensors for the monitoring of civil structures and infrastruc-
tures opens new possibilities that have no equivalent in the conventional sensors system. Thanks 
to the use of a single optical fiber with a length of tens of kilometers has sensing elements; it 
becomes possible to obtain dense information on the structure’s strain and temperature distribu-
tion.  This technology is therefore particularly suitable for applications to large or elongated 
structures; such has dams, large bridges and pipelines. 
The presented applications examples show that using an appropriate sensor design, it is possible 
to successfully install distributed sensors on large structures and obtain useful data for the 
evaluation and management of the monitored structures. 

ACKNOWLEDGEMENTS 

The authors are is indebted to Dr. Luc Thévenaz at EPFL, Marc Niklès at Omnisens,  VND2 Ltd 
and Latvenego – Daugavas hydroelektrostacijas (Latvia) and SNAM Rete Gas (Italy) for pro-
viding information on the presented application examples. 

REFERENCES 

Brönnimann R. et al. 1998. Packaging of Fiber Optic Sensors for Civil Engineering Applications", Sym-
posium DD, Reliability of Photonics Materials and Structures, San Francisco, paper DD7.2 

Dakin, J. P. et al. 1986. Distributed optical fiber Raman temperature sensor using a semiconductor light 
source and detector, Proc, IEE Colloq. on Distributed Optical Fiber sensors 

Falco & Parriaux 1992. Structural metal coatings for distributed fiber sensors, Opt. Fiber Sens. Conf. 
Proc., pp. 254 

Inaudi D. 1997a. Fiber optic smart sensing, Optical Measurement techniques and applications, P. K. Ras-
togi editor, Artech House, pp. 255-275 

Karashima T. et al. 1990. Distributed Temperature sensing using stimulated Brillouin Scattering in Opti-
cal Silica Fibers, Optics Letters, Vol. 15, pp. 1038 

Kersey A. 1997. Optical Fiber Sensors, Optical Measurement techniques and applications, P. K. Rastogi 
editor, Artech House, pp. 217-254 

Niklès M. et al. 1994. Simple Distributed temperature sensor based on Brillouin gain spectrum analysis, 
Tenth International Conference on Optical Fiber Sensors OFS 10, Glasgow, UK, SPIE Vol. 2360, pp. 
138-141 

Thévenaz L. et al. 1998. Truly Distributed Strain and Temperature Sensing Using Embedded Optical Fi-
bers, Smart Structure and Materials Conference, San Diego USA, SPIE Vol. 3330, pp. 301-314 

SMARTEC 2005. www.smartec.ch  


